

Produkt-Handbuch

Fräsen

_ SILBERN, SCHWARZ, STARK

Die neue Kraft in der Zerspanung.

Tiger-tec®Silver

ZERSPANEN WAR GESTERN, TIGERN IST HEUTE.

Schneidstoffe der Technologiemarke Tiger·tec® setzen in der Zerspanung immer wieder Maßstäbe in punkto Produktivität und Prozesssicherheit. Mit dem neuen Schneidstoff Tiger·tec®Silver sind die Walter-Ingenieure dem idealen Schneidstoff wieder einen großen Schritt näher gekommen. Tiger·tec®Silver ist ideal für die Trocken- und Nassbearbeitung von Stahl- und Gusswerkstoffen und in wichtigen Schlüsselbranchen zuhause: in der Automobilindustrie und im Schienenfahrzeugbau, in der Energietechnik, in der Luft- und Raumfahrtindustrie, im Allgemeinen Maschinenbau sowie im Werkzeug- und Formenbau.

Tiger-tec®Silver

INHALT

Fräsen

つ	T:	er∙t	(R)	CIL	
_	חוו	Δr.τ	മ്യ	>111V	JΩr

- 2 Die neue Technologie
- 6 Anwendungen und Beispiele
- 12 Anwendungstabelle

14 Programmauszug Fräswerkzeuge

16 Walter Select Fräswerkzeuge

34 Technische Informationen

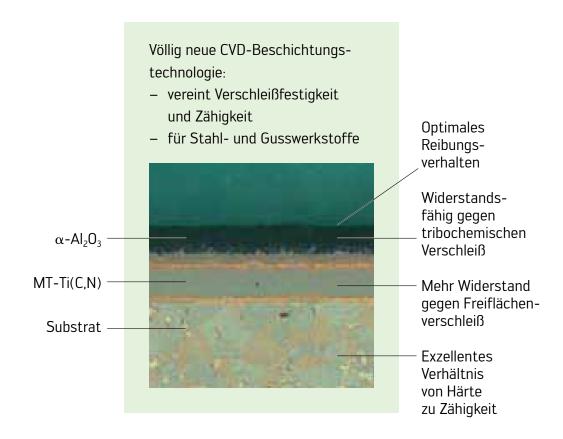
- 34 Schnittdaten zum Fräsen
- 38 Vorschub-Bestimmung
- 54 Anwendungsspezifische Daten
- 68 Wendeplatten-Geometriebeschreibung
- 76 Berechnungsformeln
- 78 Problemlösungen

Die neue Technologie

Extrem stabile
Schneidkanten
für hohe
Prozesssicherheit

Extrem glatte
Spanfläche
für beste
tribochemische
Verschleißfestigkeit

Silberfarbene Freifläche für einfachste Verschleißerkennung im Einsatz



WELTWEIT EINZIGARTIG

Mit seiner weltweit einzigartigen CVD-Beschichtungstechnologie stößt der Schneidstoff **Tiger·tec®Silver** in neue Dimensionen vor. Im Fertigungsalltag bedeutet dies: Leistungssteigerungen von bis zu 100 % bei der Zerspanung sind möglich.

Weitere Merkmale von Tiger tec® Silver:

- enorme Zähigkeit und minimale Kammrissbildung durch optimale Eigenspannung
- stark reduzierter tribochemischer
 Verschleiß durch perfekte, glatte
 Spanflächen
- unempfindlich gegen thermische Wechselbelastung bei der Nassund Trockenbearbeitung

Die neue Technologie

HOHE VERSCHLEISSFESTIGKEIT

Ein mikroskopischer Blick auf die Schneidkanten bringt es an den Tag: Der neue Schneidstoff Tiger·tec®Silver steckt aufgrund seiner neuen, revolutionären Beschichtung auch härteste Zerspanungsbedingungen unbeeindruckt weg. Kammrisse, wie sie besonders bei hohen Schnittgeschwindigkeiten, unterbrochenen Schnitten und schweren Schnittbedingungen auftreten, werden bei Tiger·tec®Silver Wendeplatten

entscheidend verringert. Im gezeigten Beispiel wurde beides Mal Vergütungsstahl 42CrMo4 gefräst. Bei der Tiger·tec® Silver Wendeplatte verringern die hohe Verschleißfestigkeit, Zähigkeit und Temperaturbeständigkeit negative Kammrissbildungen und Ausbrüche und damit teure Standzeitverkürzungen.

bisher

Tiger-tec®Silver

Herausragende Eigenschaften

PRODUKTEIGENSCHAFTEN:

Performance Steigerung bis zu 100 %

 durch bestes Verschleißverhalten bei enormer Zähigkeit

Bestes Reibverhalten

durch extrem glatte Spanflächen

Beständig gegen Deformation und Oxidationsverschleiß

 durch neuartige Aluminiumoxidbeschichtung

Hohe Beständigkeit gegen Freiflächenverschleiß

durch feinkörniges, kolumnares
 Mitteltemperatur-Titancarbonitrid

Neue Dimension im Verhältnis von Zähigkeit und Verschleißfestigkeit

 durch neuartige Beschichtungstechnologie

IHRE VORTEILE:

Geringe Fertigungskosten

 höhere Schnittgeschwindigkeiten durch hitzebeständige Beschichtung

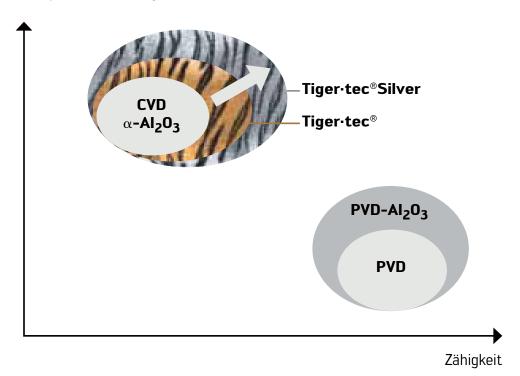
Hohe Prozesssicherheit

- hohe Zähigkeit durch
 Tiger·tec®Silver Technologie
- verbesserter Spanablauf durch extrem glatte Spanflächen

Geringe Schneidstoffkosten

- beste Verschleißerkennung durch Indikatorbeschichtung
- keine Verschwendung ungenutzter
 Schneidkanten

Tiger-tec[®]Silver

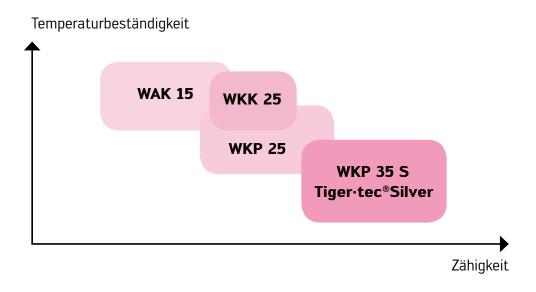


Anwendungen und Beispiele

DIE ANWENDUNG

Bei der neuen Tiger·tec®Silver Technologie kommt zu der besonderen Beschichtungskombination eine völlig neue Oberflächenbehandlung. Aufgrund der optimalen Eigenspannungen nimmt die Zähigkeit des verschleißfesten Tiger·tec®Silver Schneidstoffs überproportional zu. Es ist diese Kombination aus hoher Verschleißfestigkeit und Zähigkeit, die Tiger·tec®Silver überdurchschnittliche Leistungsfähigkeit in der Zerspanung verleiht.

Temperaturbeständigkeit


WALTER SORTENBEZEICHNUNG

WERKSTOFF: STAHL (ISO P)

WERKSTOFF: GUSS (ISO K)

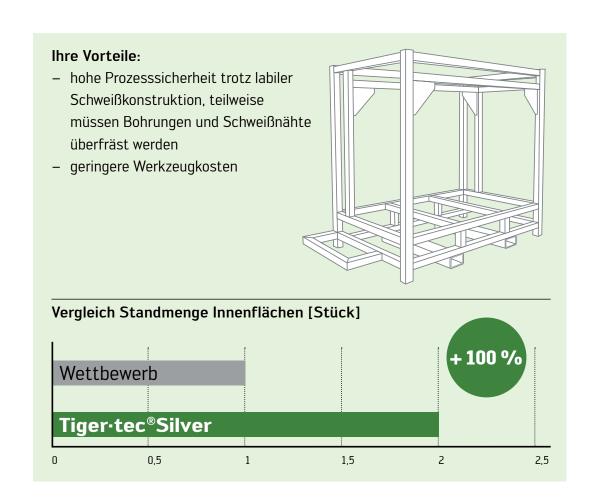
WKP 35 S

- 1. Hauptanwendung: Alle Stahlwerkstoffe bei mittleren bis hohen Schnittgeschwindigkeiten und mittleren bis hohen Zahnvorschüben. Bei ungünstigen Bedingungen wie z. B. Nassbearbeitung, schwankendem Aufmaß oder langer Auskragung.
- 2. Hauptanwendung: Kugelgraphitgusseisen oder ADI- Werkstoffe bei niedrigen bis mittleren Schnittgeschwindigkeiten und mittleren bis hohen Zahnvorschüben. Bei ungünstigen Bedingungen wie z. B. Nassbearbeitung, schwankendem Aufmaß oder starken Schnittunterbrechungen.

Beispiel 1: Maschinengestell (Eckfräsen)

 Werkstückstoff:
 St37 (1.0037), ISO P

 Werkzeug:
 F4042 / Z6 / Ø 63


 Wendeplatte:
 ADMT160608R-F56

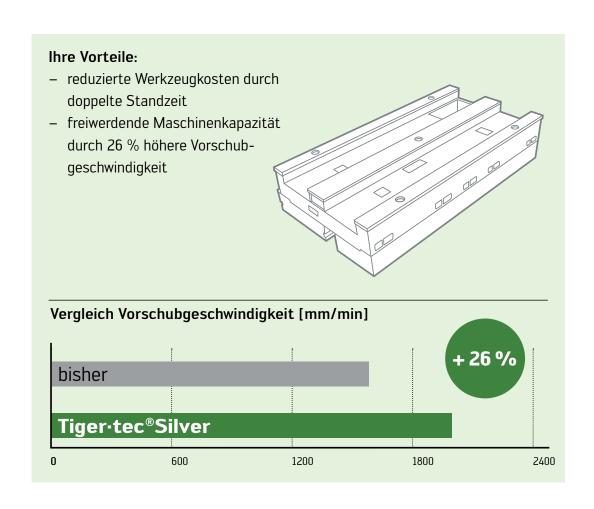
Schneidstoff: WKP35S

Schnittdaten:

	Wettbewerber	Tiger-tec®Silver
v _c [m/min]	400	400
f _z [mm]	0,2	0,2
v _f [mm/min]	2425	2425
a _p [mm]	1,5 – 3	1,5 – 3
a _e [mm]	60	60
	mit Kühlmittel	mit Kühlmittel
Standmenge	1 Innenfläche	2 Innenflächen

Beispiel 2: Führungsbahnen (Planfräsen)

Werkstückstoff: St52-2 (1.0570), ISO P Werkzeug: F4080 / Z8 / Ø 125 Wendeplatte: ODHT0605ZZN-F57


Schneidstoff: WKP35S

Schnittdaten:

	bisher	Tiger-tec®Silver
v _c [m/min]	236	283
f _z [mm]	0,33	0,33
v _f [mm/min]	1584	2000
a _p [mm]	4	4
a _e [mm]	100	100
	mit Kühlmittel	mit Kühlmittel

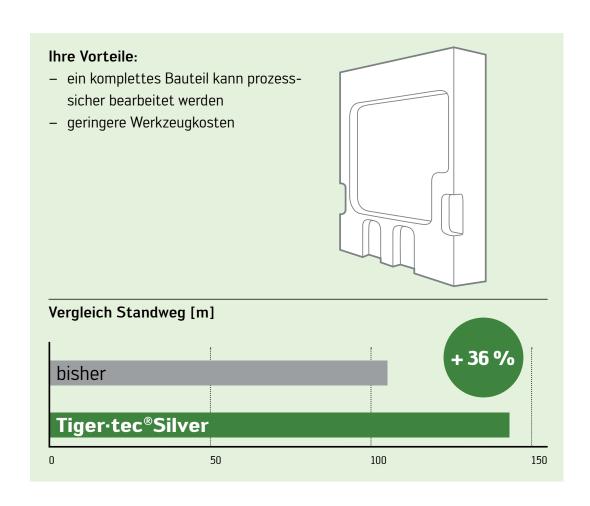
Standweg [m] 18 36

Beispiel 3: Formplatte (Taschenfräsen)

Werkstückstoff: 40CrMnMo7 (1.2311), ISO P

 Zugfestigkeit:
 1200 N/mm²

 Werkzeug:
 F4042 / Z6 / Ø 63


 Wendeplatte:
 ADMT160608R-F56

Schneidstoff: WKP35S

Schnittdaten:

	bisher	Tiger-tec®Silver
v _c [m/min]	105	105
f _z [mm]	0,3	0,3
v _f [mm/min]	955	955
a _p [mm]	3	3
a _e [mm]	35 – 63	35 – 63
	mit Kühlmittel	mit Kühlmittel
Standweg [m]	105	143

Beispiel 4: Bremssattel (Zirkular Planfräsen)

 Werkstückstoff:
 GGG50 (0.7050), ISO K

 Werkzeug:
 F4042R / Z7 / Ø 50

 Wendeplatte:
 ADMT10T308R-F56

Wendeplatte: ADM1101 **Schneidstoff**: WKP35S

1400

Schnittdaten:

Standmenge [Stück]

	Wettbewerber	Tiger-tec [®] Silver
v _c [m/min]	160	160
f _z [mm]	0,215	0,215
v _f [mm/min]	1533	1533
a _p [mm]	1,5	1,5
a _e [mm]	25	25
	ohne Kühlmittel	ohne Kühlmittel

800

Ihre Vorteile:

- Reduzierung des CPP (cost per part)
- niedrige Werkzeugkosten durch höhere Standzeiten
- hohe Prozesssicherheit

Vergleich Standmenge [Stück]

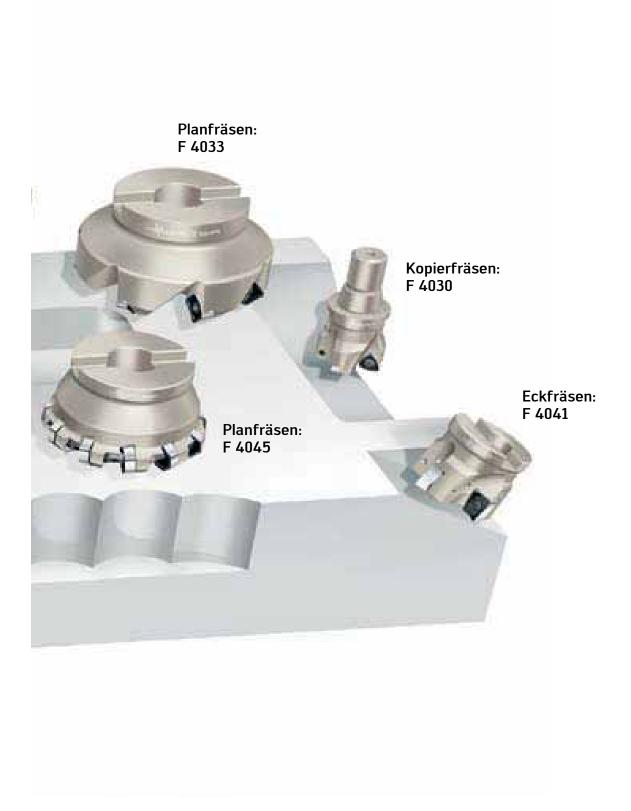
- Wettbewerb

Tiger-tec®Silver

0 400 800 1200 1600

Anwendungstabelle

		Werkstückstoff-Gruppe						
		Р	М	K	N	S	Н	
Walter Sorten- Bezeichnung	Norm- Bezeichnung	Stahl	Nichtrostender Stahl	Gusseisen	NE-Metalle	Schwerzerspan- bare Werkstoffe	Harte Werkstoffe	
WKP 35 S	HC – P 35	••						
WKP 33 3	HC – K 35			••				
WIZD 2E	HC – P 25	••						
WKP 25	HC – K 25			••				
WAK 15	HC – K 15			••				
	HC – S 45					••		
WSP 45	HC – P 45	••						
	HC – M 45		••					
WKK 25	HC – K 25			••				


HC = beschichtetes Hartmetall

●● Hauptanwendung

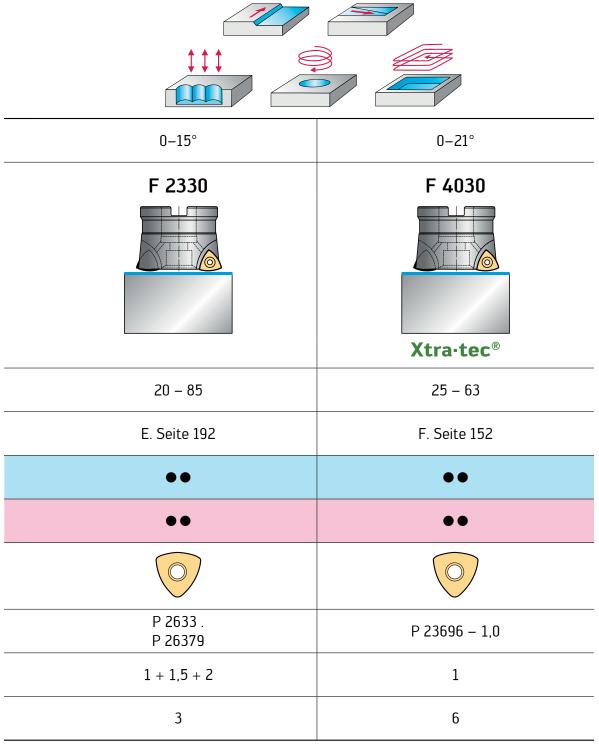
	endungsbei		۰0			
01 1	0 20 15 2	30 4	45	Beschichtungs- verfahren	Schichtaufbau	Wendeplatten- beispiel
				CVD	TiCN + Al ₂ O ₃ (+TiCN)	
				CVD	TiCN + Al ₂ O ₃ (+TiN)	
				CVD	TiCN + Al ₂ O ₃ (+TiN)	
				PVD	TiAIN + Al ₂ O ₃ (ZrCN)	
				PVD	TiAIN + Al ₂ O ₃ (ZrCN)	

Programmauszug Fräswerkzeuge

Planfräsen

Bearbeitung		
Einstellwinkel κ	45°	
Planfräser	F 4033	
	Xtra-tec®	
Ø-Bereich [mm]	40 – 200	
Bestellinformation*	E. Seite 194	
P Stahl	••	
K Gusseisen	••	
Wendeplatten- Grundform		
Wendeplatten- Typen	SN . X 1205 SN . X 1606	
max. Schnitttiefen [mm]	6,5 + 9	
Anzahl Schneidkanten pro Wendeplatte	8	

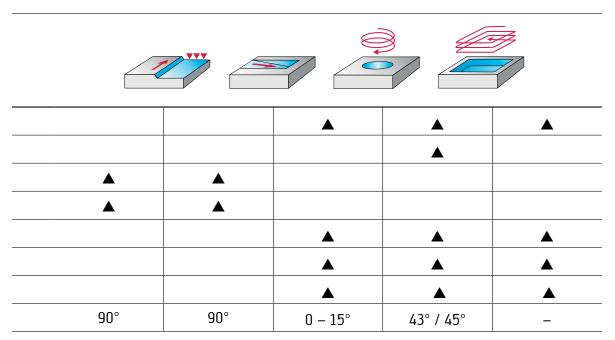
^{*} G. = Gesamtkatalog 2007 E. = Ergänzungskatalog 2009 F. = Innovationsflyer 2010


75°	88°	45°
F 4047	F 4048	F 4045
Xtra-tec®	Xtra-tec®	Xtra-tec®
40 – 200	40 – 200	63 – 200
E. Seite 198	E. Seite 200	F. Seite 153
••	••	
••	••	••
SN . X 1205	SN . X 1205	XNHF 0705 XNHF 0906
8	10	4 + 6
8	8	14

Planfräsen

Bearbeitung				
Einstellwinkel κ	43°			
Planfräser	F 4080 Xtra-tec®			
Ø-Bereich [mm]	32 – 170			
Bestellinformation*	F. Seite 155, G. Seite 510			
P Stahl	••			
K Gusseisen	••			
Wendeplatten- Grundform				
Wendeplatten- Typen	OD 0504 OD 0605			
max. Schnitttiefen [mm]	3 / 8 + 4 / 10			
Anzahl Schneidkanten pro Wendeplatte	8			

^{*} G. = Gesamtkatalog 2007 E. = Ergänzungskatalog 2009 F. = Innovationsflyer 2010

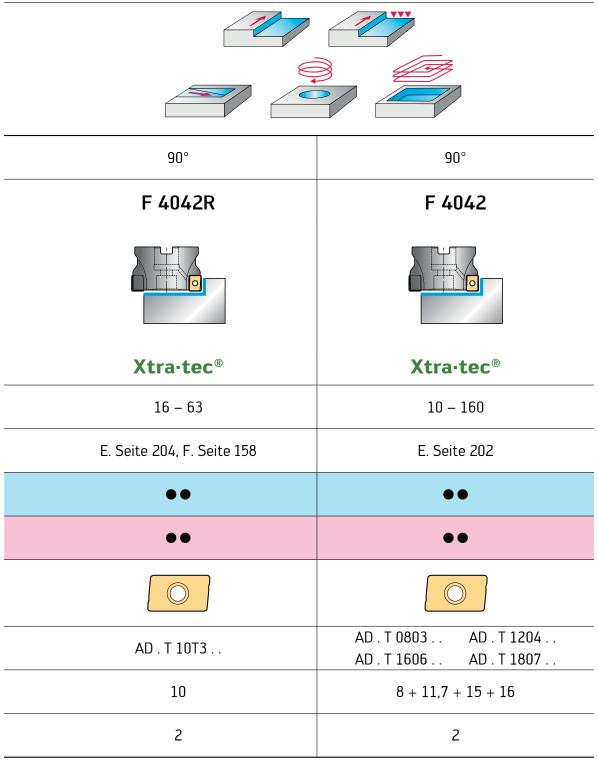


Planfräsen

Bearbeitung	
Schruppen	A
Schlichtfräsen	A
Eckfräsen	
Eckfräsen (schlichten)	
Eintauchen	
Zirkularfräsen	
Taschenfräsen	
Einstellwinkel κ	45° / 75° / 88°
Planfräser	F 2010
Ø-Bereich [mm]	80 – 315
Bestellinformation*	E. Seite 186, F. Seite 159
P Stahl	••
K Gusseisen	••
Wendeplatten- Grundform	
Wendeplatten- Typen	SN . X 1205 SN . X 1606
max. Schnitttiefen [mm]	6,5 + 8 + 9 + 10
Anzahl Schneidkanten pro Wendeplatte	8

* G. = Gesamtkatalog 2007 E. = Ergänzungskatalog 2009 F. = Innovationsflyer 2010

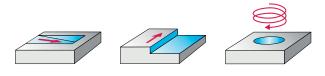
F 2010


00 315	00 315	70 205	00 315	7/ 200
80 – 315	80 – 315	70 – 305	80 – 315	74 – 309
G. Seite 472	G. Seite 468	G. Seite 452	G. Seite 454	G. Seite 474
••	••	• •	••	••
••	• •	••	••	••
LNGX 1307	AD 1204 AD 1606	P 2633 R25 P 26379 - R25	OD 0605	RO . X 1605
13	11,7 + 15	2	4 / 10	8
4	2	3	8	6

Eckfräsen

Bearbeitung	
Einstellwinkel κ	90°
Eckfräser	F 4041
	Xtra-tec®
Ø-Bereich [mm]	40 – 160
Bestellinformation*	G. Seite 520
P Stahl	••
K Gusseisen	••
Wendeplatten- Grundform	
Wendeplatten- Typen	LNGX 1307
max. Schnitttiefen [mm]	13
Anzahl Schneidkanten pro Wendeplatte	4

^{*} G. = Gesamtkatalog 2007 E. = Ergänzungskatalog 2009 F. = Innovationsflyer 2010



Eckfräsen

Bearbeitung			
Einstellwinkel κ	90° 90°		
Eckfräser	F 4038	F 4138	
	10000 P	00000	
	Xtra-tec®	Xtra-tec®	
Ø-Bereich [mm]	20 – 32	32 – 80	
Bestellinformation*	E. Seite 216	G. Seite 556, F. Seite 156	
P Stahl	••	••	
K Gusseisen	••	••	
Wendeplatten- Grundform			
Wendeplatten- Typen	AD . T 0803	AD . T 1204	
max. Schnitttiefen [mm]	37	76	
Anzahl Schneidkanten pro Wendeplatte	2	2	

^{*} G. = Gesamtkatalog 2007 E. = Ergänzungskatalog 2009 F. = Innovationsflyer 2010

90°	90°
F 4238	F 4338
Xtra-tec®	Xtra-tec®
40 – 80	63 – 125
G. Seite 558, F. Seite 156	F. Seite 156
••	••
••	••
AD . T 1606	AD . T 1807
112	124
2	2

Nutfräsen

Bearbeitung	
Einstellwinkel κ	90°
Nutfräser	F 4053
	Xtra-tec®
Ø-Bereich [mm]	80 – 160
Bestellinformation*	E. Seite 218, F. Seite 157
P Stahl	••
K Gusseisen	••
Wendeplatten- Grundform	
Wendeplatten- Typen	LN.X 070204
kreuzverzahnt: max. Schnittbreiten [mm]	4
Anzahl Schneidkanten pro Wendeplatte	2 + 2

^{*} G. = Gesamtkatalog 2007 E. = Ergänzungskatalog 2009 F. = Innovationsflyer 2010

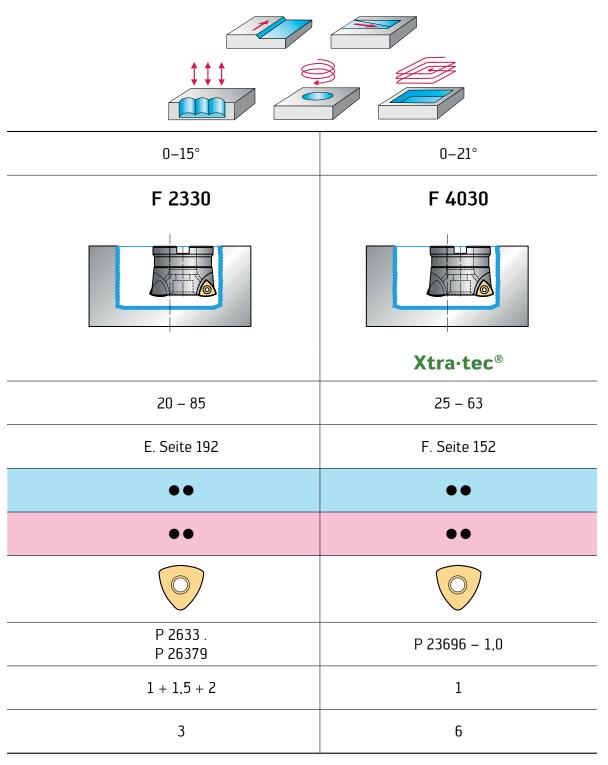
90°	90°
F 4153	F 4253
Xtra-tec®	Xtra·tec®
80 – 200	100 – 315
E. Seite 220, F. Seite 157	E. Seite 222, F. Seite 157
••	• •
• •	• •
LN 0803 LN 0804 LN 1005	LN 0804 LN 1005 LN 1206 LN 1608
6 + 8 + 10	12 + 14 + 16 + 20 + 25
2 + 2	2 + 2

Kopierfräsen

Bearbeitung	
Kopierfräser	F 2334
Ø-Bereich [mm]	25 – 160
Bestellinformation*	G. Seite 590
P Stahl	••
K Gusseisen	••
Wendeplatten- Grundform	
Wendeplatten- Typen	RO . X
max. Schnitttiefen [mm]	4 – 10
Anzahl Schneidkanten pro Wendeplatte	4 – 8

* G. = Gesamtkatalog 2007 E. = Ergänzungskatalog 2009 F. = Innovationsflyer 2010

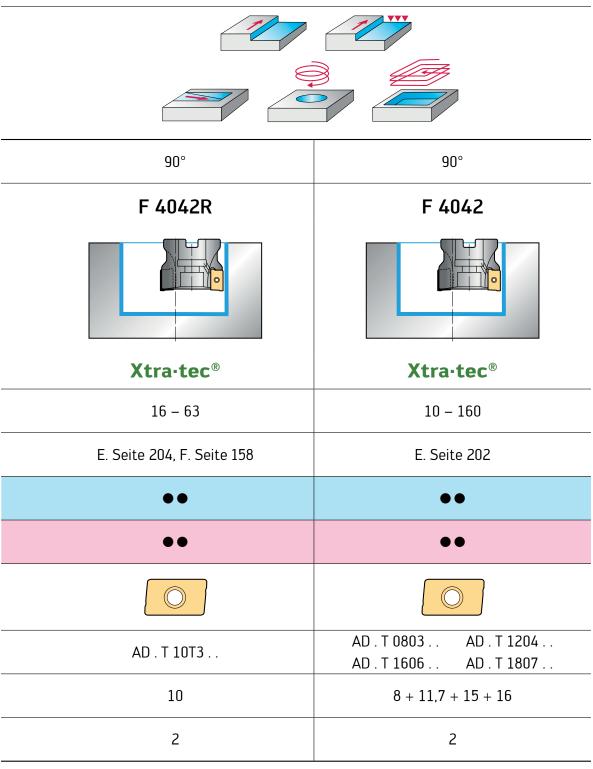
Bohrzirkularfräsen


Bearbeitung			
Einstellwinkel κ	45° / 90°		
Bohrzirkularfräser	F 4081		
	Xtra-tec®		
Ø-Bereich [mm]	36 – 85		
Bestellinformation*	F. Seite 155		
P Stahl	••		
K Gusseisen	••		
Wendeplatten- Grundform			
Wendeplatten- Typen	OD 0504 OD 0605		
max. Schnitttiefen [mm]	3 + 4		
Anzahl Schneidkanten pro Wendeplatte	2 – 4		

Bohrzirkularfräsen

Bearbeitung		
Einstellwinkel κ	43°	
Bohrzirkularfräser	F 4080	
	Xtra-tec®	
Ø-Bereich [mm]	32 – 170	
Bestellinformation*	F. Seite 155, G. Seite 510	
P Stahl	••	
K Gusseisen	••	
Wendeplatten- Grundform		
Wendeplatten- Typen	OD 0504 OD 0605	
max. Schnitttiefen [mm]	3 / 8 + 4 / 10	
Anzahl Schneidkanten pro Wendeplatte	2 – 4	

^{*} G. = Gesamtkatalog 2007 E. = Ergänzungskatalog 2009 F. = Innovationsflyer 2010



Bohrzirkularfräsen

Bearbeitung	
Einstellwinkel κ	
Bohrzirkularfräser	F 2334
Ø-Bereich [mm]	25 – 160
Bestellinformation*	G. Seite 590
P Stahl	••
K Gusseisen	••
Wendeplatten- Grundform	
Wendeplatten- Typen	RO . X
max. Schnitttiefen [mm]	4 – 10
Anzahl Schneidkanten pro Wendeplatte	2 – 4

* G. = Gesamtkatalog 2007 E. = Ergänzungskatalog 2009 F. = Innovationsflyer 2010

Technische Informationen

Schnittdaten zum Fräsen

Werkstoff-Gruppe	Werkstückstoff		Brinell Härte HB
		ca. 0,15 % C geglüht	125
		ca. 0,45 % C geglüht	190
	Unlegierter Stahl ¹	ca. 0,45 % C vergütet	250
		ca. 0,75 % C geglüht	270
		ca. 0,75 % C vergütet	300
		geglüht	180
P	Niedriglegierter Stahl ¹	vergütet	275
		vergütet	300
		vergütet	350
	Hochlegierter Stahl und hochlegierter Werkzeugstahl ¹	geglüht	200
		gehärtet und angelassen	325
	Nichtrostender Stahl ¹	ferritisch / martensitisch, geglüht	200
		martensitisch, vergütet	240
	Grauguss	perlitisch / ferritisch	180
K		perlitisch (martensitisch)	260
	Grauguss mit Kugelgraphit	ferritisch	160
K		perlitisch	250
	Temperguss	ferritisch	130
		perlitisch	230

ppe ²	Schruppen mit Plan-/Eckfräsern		Schruppen mit Igelfräsern		Schruppen mit Scheibenfräsern		
Zerspanungsgruppe ²	WKP	35 S	WKP	35 S		WKP 35 S	
spanu	a _e /	D_c^3	a _e /	D_c^3		a _e / D _C	
Zer	1/1 1/2	1/5	1/1 1/2	1/5	central	1/5	1/10
1	250	300	195	250	195	250	275
2	220	260	170	215	170	215	230
3	195	220	150	185	150	185	285
4	180	200	140	170	140	170	170
5	160	180	130	145	130	145	150
6	220	270	170	215	170	215	235
7	180	210	135	155	130	165	165
8	170	190	130	145	125	145	150
9	130	150	90	105	90	100	105
10	130	160	100	120	100	120	130
11	80	90	60	70	60	75	75
12	140	160	105	120	105	130	130
13	100	120	70	95	70	95	105
15	300	330	160	180	160	180	190
16	170	200	120	140	120	140	150
17	200	220	140	150	140	150	160
18	140	160	110	120	110	120	130
19	210	240	150	170	150	170	180
20	150	180	130	140	130	140	150

¹ und Stahlguss

 $^{^2}$ Die Anordnung der Zerspanungsgruppe finden Sie im Gesamtkatalog 2007 ab Seite 791 3 a $_e$ / D $_c$ = 1/10, v $_c$ = 10 % höher als 1/5

Schnittdaten zum Fräsen

Werkstoff-Gruppe	Werkstückstoff		Brinell Härte HB
		ca. 0,15 % C geglüht	125
		ca. 0,45 % C geglüht	190
	Unlegierter Stahl ¹	ca. 0,45 % C vergütet	250
		ca. 0,75 % C geglüht	270
		ca. 0,75 % C vergütet	300
	Niedriglegierter Stahl ¹	geglüht	180
P		vergütet	275
		vergütet	300
		vergütet	350
	Hochlegierter Stahl und	geglüht	200
	Hochlegierter Stahl und hochlegierter Werkzeugstahl ¹	gehärtet und angelassen	325
	Nichtrostender Stahl ¹	ferritisch / martensitisch, geglüht	200
	Nichtrostender Stanii	martensitisch, vergütet	240
	Grauguss	perlitisch / ferritisch	180
	Orauguss	perlitisch (martensitisch)	260
K	Grauguss mit Kugelgraphit	ferritisch	160
K	orauguss mit Kugeigrapint	perlitisch	250
	Tomporques	ferritisch	130
	Temperguss	perlitisch	230

ope ²		Schruppen mit Kopierfräsern	Bohrzirkularfräsen				
Zerspanungsgruppe ²		WKP 35 S		WKP	35 S		
spanu		a _e / D _C		a _e /	D_c^3		
Zer	1/1	1/5	1/10	1/1	1/5		
1	240	300	300	220	270		
2	200	255	275	200	230		
3	185	240	240	180	200		
4	155	195	210	160	180		
5	145	180	185	140	160		
6	165	210	230	200	240		
7	155	195	215	160	190		
8	145	180	200	150	170		
9	120	155	170	110	130		
10	110	145	160	120	140		
11	75	100	100	80	90		
12	120	155	170	120	140		
13	110	145	155	90	100		
15	240	280	300	270	297		
16	190	230	250	153	180		
17	240	280	300	180	198		
18	190	230	250	126	144		
19	250	290	310	189	216		
20	200	240	260	135	162		

¹ und Stahlguss

 $^{^2}$ Die Anordnung der Zerspanungsgruppe finden Sie im Gesamtkatalog 2007 ab Seite 791 3 a $_e$ / D $_c$ = 1/10, v $_c$ = 10 % höher als 1/5

Vorschub-Bestimmung

Fräse	rtypen	F 2010 / F 2330 Planfräsen				
Zahnvorschub \mathbf{f}_{zo} für $\mathbf{a}_e = \mathbf{D}_c$ $\mathbf{a}_p = \mathbf{a}_{p \text{max}} = \mathbf{L}_c$						
Einste	ellwinkel ĸ			0 – 15°		
				$f_{zo} = [mm]$		
Werkz	reug-Ø bzw. Ø-Bereich [mm]		20 – 25	32 – 85	52 – 315	
max. S	Schnitttiefen a _{p max} = L _c [mm]		$a_{p max} = 1$	$a_{p max} = 1,5$	$a_{p max} = 2$	
	Unlegierter Stahl*		1,2	1,6	2,0	
Р	Niedriglegierter Stahl*	1,0	1,4	1,8		
	Hochlegierter Stahl und Werkzeugstahl	0,7	1,0	1,2		
	Nichtrostender Stahl* martensitisch		0,5	0,6	0,8	
	Grauguss	1,2	1,6	2,0		
K	Gusseisen mit Kugelgraphit	1,0	1,4	1,8		
	Temperguss		1,0	1,4	1,8	
Wend	eplatten-Typen		P 2633 . – R 10	P 2633 . – R 14	P 2633 . – R 25	
Korrol	a _e / D _c =	: 1/1–1/2	1,0	1,0	1,0	
		1/5	1,4	1,4	1,3	
	n Zahnvorschub Igig vom Verhältnis	1/10	1,8	1,8	1,8	
Schni	ttbreite a _e zu	1/20				
Frase	rdurchmesser D _c	1/50				
	a _p =	: 0,5	1,3	1,4	1,5	
Korrel	ktur-Faktor Ka p	1,0	1,0	1,2	1,4	
für den Zahnvorschub abhängig von der Schnitttiefe a,		1,5		1,0	1,2	
voii ut	Schilictuere a _p	2,0			1,0	
Korrel		1<(L : D _c)≤2	1,4	1,4	1,4	
Fakto	r K	$2<(L:D_c)\leq 4$	1,0	1,0	1,0	
	LL	$4<(L:D_c)\leq 6$	0,7	0,7	0,7	
f	$_{z} = f_{zo} \cdot Ka_{e} \cdot Ka_{p} \cdot K$					

^{*} und Stahlguss

Planfräser: F 2010, F 2330, F4030

	F 2330 Tauchfräsen	F 4030 Planfräsen	F 4030 Tauchfräsen	
			Xtra-tec®	Xtra-tec®
	0 – 15°		0 – 21°	0 – 21°
20 25	$f_{zo} = [mm]$	F2 245	$f_{zo} = [mm]$	$f_{zo} = [mm]$
20 – 25	32 – 85	52–315	25 – 63	25 – 63
$a_{e max} = 7$	a _{e max} = 10	a _{e max} = 15	a _{pmax} = 1	a _{emax} = 10
0,18	0,25	0,30	1,2	0,18
0,16	0,22	0,25	1,0	0,16
0,12	0,16	0,22	0,7	0,12
0,10	0,12	0,15	0,5	0,10
0,18	0,25	0,30	1,2	0,18
0,16	0,22	0,28	1,0	0,16
0,16	0,22	0,28	1,0	0,16
P 2633 . – P 26379 – R 10	P 2633 . – P 26379 – R 14	P 2633 . – P 26379 – R 25	P 23696 – R 14	P 23696 – R 14
			1,0	
			1,4	
			1,8	
			1,3	
			1,0	
1,0	1,0	1,0		1,0
0,7	0,7	0,7		0,7
0,5	0,7	0,7		0,5
	٠,٠	۵,0		0,5

Vorschub-Bestimmung

Fräse	ertypen		F 2010 / F 4080			
Zahnvorschub \mathbf{f}_{zo} für $\mathbf{a}_e = \mathbf{D}_c$ $\mathbf{a}_p = \mathbf{a}_{p \text{max}} = \mathbf{L}_c$			Xtra-tec®			
Einst	ellwinkel κ	·	4.	3°		
			$f_{zo} =$	[mm]		
Werk	zeug-Ø bzw. Ø-Bereich [mm]		32–125	50-315		
max.	Schnitttiefen $a_{p max} = L_{c} [mm]$		3 /8	4 / 10		
	Unlegierter Stahl*		0,45	0,50		
Р	Niedriglegierter Stahl*		0,40	0,45		
F	Hochlegierter Stahl und Werk	kzeugstahl*	0,30	0,35		
	Nichtrostender Stahl* marte	ensitisch	0,20	0,25		
	Grauguss		0,45	0,50		
K	Gusseisen mit Kugelgraphit		0,35	0,40		
	Temperguss		0,35	0,40		
Wen	deplatten-Typen		OD 0504	OD 0605		
	a _e	/ D _c = 1/1-1/2	1,0	1,0		
Korre	ektur-Faktor Ka e	1/5	1,1	1,1		
	en Zahnvorschub ngig vom Verhältnis	1/10	1,2	1,2		
Schr	ittbreite a _e zu	1/20	1,3	1,3		
Fräse	erdurchmesser D _c	1/50				
		$a_p = 1$	1,0	1,0		
		2	1,0	1,0		
Korra	ektur-Faktor Ka	3	1,0	1,0		
Korrektur-Faktor Ka _p		4	0,6	1,0		
	en Zahnvorschub abhängig Ier Schnitttiefe a _p	6	0,6	0,6		
	۲	8	0,6	0,6		
		$a_{p \text{ max}} = L_{c}$	0,6	0,6		
f _z	$= f_{zo} \cdot Ka_e \cdot Ka_p \cdot K$					

^{*} und Stahlguss

Planfräser: F 2010, F 4080, F 4081, F 4033, F 4045

F 4	081	F 2010 /	F 4033	F 40	045	
Xtra	Xtra-tec®		tec®	Xtra-tec®		
45	 5°	45	 5°	4'	5°	
$f_{zo} = [$		f _{zo} = [$f_{zo} = 1$		
36–85	52–85	40–315	50–315	63–200	80–200	
3 /8	4 / 10	6	9	4	6	
0,40	0,45	0,25	0,40			
0,36	0,40	0,20	0,35			
0,27	0,32	0,20	0,30			
0,18	0,22	0,15	0,20			
0,40	0,45	0,30	0,50	0,30	0,50	
0,32	0,36	0,25	0,40	0,25	0,40	
0,32	0,36	0,25	0,30	0,25	0,30	
OD 0504 mit Eckenradius	OD 0605 mit Eckenradius	SN . X 120512 SN . X 120520 SN . X 1205 ANN	SN . X 1606	XNHF 0705	XNHF 0906	
1,0	1,0	1,0	1,0	1,0	1,0	
1,1	1,1	1,1	1,1	1,1	1,1	
1,2	1,2	1,2	1,2	1,2	1,2	
1,3	1,3	1,3	1,3	1,3	1,3	
				1,0	1,0	
				1,0	1,0	
				1,0	1,0	
				1,0	1,0	
				0,6	1,0	
				0,6	0,6	
				0,6	0,6	

Vorschub-Bestimmung

Fräs	ertypen		F 2010 / F 4047	F 2010 / F 4048
für a _e = I	vorschub \mathbf{f}_{zo} O_{c} $\mathbf{a}_{p \text{max}} = L_{c}$	D _c a _{p max}		
			Xtra-tec®	Xtra-tec®
Einst	ellwinkel κ		75°	88°
			$f_{zo} = [mm]$	$f_{zo} = [mm]$
Werk	zeug-Ø bzw. Ø-Bereich [m	m]	63 – 315	63 – 315
max.	Schnitttiefen $a_{p max} = L_c [m]$	m]	8	10
	Unlegierter Stahl*		0,22	0,20
Р	Niedriglegierter Stahl*		0,18	0,17
F	Hochlegierter Stahl und W	/erkzeugstahl*	0,18	0,17
	Nichtrostender Stahl* ma	rtensitisch	0,14	0,13
	Grauguss		0,25	0,22
K	Gusseisen mit Kugelgraph	it	0,22	0,20
	Temperguss		0,22	0,20
Wendeplatten-Typen		SN . X 120512 SN . X 120520 SN . X 1205 ENN	SN . X 120512 SN . X 120520 SN . X 1205 ZNN	
Korr	oktur-Faktor K a	$a_e / D_c = 1/1 - 1/2$	1,0	1,0
Korrektur-Faktor Ka _e $\frac{1}{5}$		1,1	1,1	
	en Zahnvorschub ngig vom Verhältnis	1/10	1,2	1,2
Schr	ittbreite a _e zu	1/20	1,3	1,3
Fräserdurchmesser D_c ${1/50}$				

 $f_z = f_{zo} \cdot Ka_e$

^{*} und Stahlguss

Plan- und Eckfräser: F 2010, F 4047, F 4048, F 4041, F 4042, F 4042R

F 2010 / F 4041 F 2010 / F 4042 / F 4042R Xtra-tec® Xtra-tec® 90° 90° $f_{zo} = [mm]$ $f_{zo} = [mm]$ 10 - 5016 - 3225 – 315 40 –315 50 - 16040 – 315 8 10 11,7 15 16,7 13 0,15 0,18 0,20 0,25 0,30 0,20 0,22 0,15 0,10 0,12 0,15 0,18 0,10 0,12 0,15 0,18 0,22 0,15 0,08 0,10 0,12 0,15 0,18 0,12 0,15 0,20 0,25 0,30 0,40 0,25 0,15 0,20 0,25 0,30 0,12 0,20 0,12 0,15 0,20 0,25 0,30 0,20 AD . . LNGX 1307 1807 0803 10T3 1204 1606 1,0 1,0 1,0 1,0 1,0 1,0 1,1 1,1 1,1 1,1 1,1 1,1 1,2 1,2 1,2 1,2 1,2 1,2 1,3 1,3 1,3 1,3 1,3 1,3

Vorschub-Bestimmung

Fräs	ertypen				
1103	егсурен		F 2010 / F 4038		
Zahnvorschub \mathbf{f}_{zo} für $\mathbf{a}_e = \mathbf{D}_c$ $\mathbf{a}_p = \mathbf{a}_{p \text{max}} = \mathbf{L}_c$			Xtra·tec®		
Einst	tellwinkel κ		90°		
			f _{zo} = [mm]		
Werk	kzeug-Ø bzw. Ø-Bereich [mm]		20 – 32		
max.	Schnitttiefen a _{p max} = L _c [mm]		15 – 37		
	Unlegierter Stahl*		0,15		
Р	Niedriglegierter Stahl*		0,10		
	Hochlegierter Stahl und Werkzeugstahl*		0,10		
	Nichtrostender Stahl* marte	ensitisch	0,08		
	Grauguss		0,15		
K	Gusseisen mit Kugelgraphit		0,12		
	Temperguss		0,12		
Wen	deplatten-Typen		AD 0803		
Vorr	a _e ektur-Faktor Ka_e	/ D _c = 1/1-1/2	1,01		
	-	1/5	1,1		
	en Zahnvorschub Ingig vom Verhältnis	1/10	1,2		
Schr	nittbreite a _e zu	1/20	1,3		
Frasi	erdurchmesser D _c	1/50	1,5		
		$a_p = 1$	1,0		
		2	1,0		
Korre	ektur-Faktor Ka p	3	1,0		
·		4	1,0		
	en Zahnvorschub abhängig Ier Schnitttiefe a _p	6	0,8		
		8	0,7		
		$a_{p max} = L_{c}$	0,5²		
fz	$= f_{zo} \cdot Ka_e \cdot Ka_p \cdot K$				

^{*} und Stahlguss

Eckfräser: F 4038, F 4138, F 4238, F 4338

F 4138	F 4238	F 4338
Xtra·tec®	Xtra-tec®	Xtra-tec®
90°	90°	90°
$f_{zo} = [mm]$	$f_{zo} = [mm]$	$f_{zo} = [mm]$
32 – 80	40 – 80	63 – 125
33 – 76	29 – 112	31 – 124
0,20	0,25	0,25
0,15	0,20	0,20
0,15	0,18	0,18
0,12	0,12	0,12
0,25	0,28	0,28
0,20	0,22	0,22
0,20	0,22	0,22
AD 1204	AD1606	AD 1807
1,01	1,01	1,01
1,1	1,1	1,1
1,2	1,2	1,2
1,3	1,3	1,3
1,5	1,5	1,5
1,0	1,0	1,0
1,0	1,0	1,0
1,0	1,0	1,0
1,0	1,0	1,0
0,8	0,8	0,8
0,7	0,7	0,7
0,5²	0,52	0,5²

 $^{^1}$ nur möglich, wenn $a_p < 0.5~x~D_C~\cdot~^2$ nur möglich, wenn $a_e/D_C < 1/5$

Vorschub-Bestimmung

Fräs	ertypen		F 4053		
für Einta	nvorschub f zo auchen ige Anstellung		Xtra-tec®		
Einst	tellwinkel κ		90°		
			f _{zo} = [mm]		
Werk	kzeug-Ø bzw. Ø-Bereich [mm]		80–160		
max.	Schnitttiefen $a_{p max} = L_{c} [mm]$		4		
	Unlegierter Stahl*		0,11		
Р	Niedriglegierter Stahl*		0,09		
Г	Hochlegierter Stahl und Werkze	eugstahl*	0,09		
	Nichtrostender Stahl* martens	sitisch	0,05		
	Grauguss		0,12		
K	Gusseisen mit Kugelgraphit		0,11		
	Temperguss		0,11		
Wen	deplatten-Typen		LN . X0702		
		Mittig	1,0		
Korrektur-Faktor $\mathbf{Ka_e}$ $\mathbf{a_e} / \mathbf{D_c} = \overline{1/3}$		$D_c = \frac{1}{3}$	1,5		
für d	en Zahnvorschub	1/5	1,8		
	ingig vom Verhältnis nittbreite a _e zu	1/10	2,5		
	erdurchmesser D _c	1/20	3,3		
		1/50	5,8		

$$f_z = f_{zo} \cdot Ka_e$$

^{*} und Stahlguss

Scheibenfräser: F 4053, F 4153, F 4253

F 4153			F 4253				
	Xtra-tec®				Xtra-tec®		
90°					90°		
$f_{zo} = [mm]$					$f_{zo} = [mm]$		
80 – 200	80 – 200	80 – 200	100 – 200	100 – 200	125 – 200	160 – 250	160 – 315
6	8	10	12	14	16	20	25
0,12	0,13	0,14	0,15	0,15	0,20	0,20	0,23
0,10	0,12	0,12	0,13	0,13	0,17	0,17	0,20
0,10	0,12	0,12	0,13	0,13	0,17	0,17	0,20
0,05	0,07	0,07	0,08	0,08	0,10	0,10	0,13
0,13	0,15	0,15	0,18	0,18	0,23	0,23	0,23
0,12	0,13	0,13	0,15	0,15	0,20	0,20	0,20
0,12	0,13	0,13	0,15	0,15	0,20	0,20	0,20
LN 0803	LN 0804	LN 1005	LN 0804	LN 0804	LN 1005	LN 1206	LN 1608
1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
1,8	1,8	1,8	1,8	1,8	1,8	1,8	1,8
2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5
3,3	3,3	3,3	3,3	3,3	3,3	3,3	3,3
5,8	5,8	5,8	5,8	5,8	5,8	5,8	5,8

Vorschub-Bestimmung Kopierfräser: F 2010, F 2334

Fräsertypen			F 2010 / F 2334				
Zahnvorschub \mathbf{f}_{zo} für $\mathbf{a}_e = \mathbf{D}_c$ $\mathbf{a}_p = \mathbf{a}_{p \text{max}} = \mathbf{L}_c$							
Werk	czeug-Ø bzw. Ø-Bereich [mm]		25 / 32	32 / 66	40-80	52–250	63–160
max.	Schnitttiefen $a_{p max} = L_{c} [mm]$		4	5	6	8	10
	Unlegierter Stahl*		0,11	0,17	0,22	0,28	0,33
	Niedriglegierter Stahl*		0,09	013	0,15	0,22	0,28
Р	Hochlegierter Stahl und Werkzeu	0,09	0,13	0,15	0,22	0,28	
	Nichtrostender Stahl* martensit	0,07	0,09	0,11	0,13	0,17	
	Grauguss		0,13	0,22	0,28	0,33	0,39
K	Gusseisen mit Kugelgraphit		0,11	0,17	0,22	0,28	0,33
	Temperguss		0,11	0,17	0,22	0,28	0,33
Wen	deplatten-Typen		RO . X 0803	RO . X 10T3	RO . X 1204	RO . X 1605	RO . X 2006
Korr	a _e / D _o ektur-Faktor Ka_e	= 1/1-1/2	1,0	1,0	1,2	1,2	1,2
		1/5	1,2	1,2	1,4	1,4	1,4
	en Zahnvorschub Ingig vom Verhältnis	1/10	1,5	1,5	1,6	1,6	1,6
Schr	nittbreite a _e zu erdurchmesser D _c	1/20	1,8	1,8	1,8	1,8	1,8
	erdurchinesser D _c	1/50	2,0	2,0	2,0	2,0	2,0
	a _r	= 1	1,4	1,5	1,6	1,8	2,0
		2	1,1	1,2	1,3	1,4	1,5
Korre	ektur-Faktor Ka ,	4	1,0	1,0	1,1	1,2	1,5
	en Zahnvorschub abhängig	5		1,0	1,0	1,1	1,2
	ler Schnitttiefe a _p	6				1,0	1,1
		8					1,1
		10					1,0
fz	$= f_{zo} \cdot Ka_e \cdot Ka_p \cdot K$						

^{*} und Stahlguss

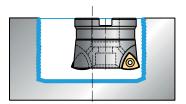
Bohrzirkularfräser: F 4081

Fräs	ertypen		F 4081		
Zahnvorschub $\mathbf{f_{zo}}$ für $\mathbf{a_e} = \mathbf{D_a}$ $\mathbf{a_p} = \mathbf{a_{p max}} = \mathbf{L_c}$			Xtra-tec®		
Einst	ellwinkel κ		4!	ō°	
			$f_{zo} = 1$	mm]	
Werk	zeug-Ø bzw. Ø-Bereich [mm]		36 - 85	52 - 85	
max.	Schnitttiefen $a_{p max} = L_{c} [mm]$		3	4	
	Unlegierter Stahl*		0,40	0,45	
Р	Niedriglegierter Stahl*		0,36	0,40	
r	Hochlegierter Stahl und Werkzeugstahl*		0,27	0,32	
	Nichtrostender Stahl* marten	sitisch	0,18	0,22	
	Grauguss		0,40	0,45	
K	Gusseisen mit Kugelgraphit		0,32	0,36	
	Temperguss		0,32	0,36	
Wendeplatten-Typen		OD 0504	OD 0605		
$a_e / D_c = 1/1-1/2$			1,0	1,0	
	ektur-Faktor Ka e	1/5	1,1	1,1	
	en Zahnvorschub ngig vom Verhältnis	1/10	1,2	1,2	
Schr	ittbreite a _e zu	1/20	1,3	1,3	
Fräs	erdurchmesser D _c	1/50			

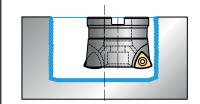
 $f_z = f_{zo} \cdot Ka_e$

^{*} und Stahlguss

Vorschub-Bestimmung


Fräsertypen			F 4080		
Zahnvorschub \mathbf{f}_{zo} für $\mathbf{a}_e = \mathbf{D}_a$ $\mathbf{a}_p = \mathbf{a}_{p \text{ max}} = \mathbf{L}_c$			Xtra-tec®		
Einst	 tellwinkel κ	,	4:	3°	
			$f_{zo} = $	[mm]	
Werk	kzeug-Ø bzw. Ø-Bereich [1	mm]	32 - 125	50 - 170	
max.	Schnitttiefen $a_{p max} = L_c$ [mm]	3	4	
	Unlegierter Stahl*		0,40	0,45	
Р	Niedriglegierter Stahl*		0,36	0,40	
F	Hochlegierter Stahl und	Werkzeugstahl*	0,27	0,32	
	Nichtrostender Stahl* n	nartensitisch	0,18	0,22	
	Grauguss		0,40	0,45	
K	Gusseisen mit Kugelgraphit		0,32	0,36	
	Temperguss		0,32	0,36	
Wendeplatten-Typen		OD 0504	OD 0605		
$a_e / D_c = 1/1-1/2$		1,0	1,0		
	Korrektur-Faktor Ka _e 1/5		1,1	1,1	
	en Zahnvorschub ingig vom Verhältnis	1/10	1,2	1,2	
Schr	nittbreite a _e zu	1/20	1,3	1,3	
Fräserdurchmesser D_c ${1/5}$		1/50			

 $f_z = f_{zo} \cdot Ka_e$


^{*} und Stahlguss

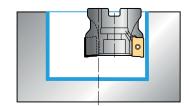
Bohrzirkularfräser: F 4080, F 2330, F 4030

F 4030

Xtra·tec®

	0 – 15°	0 – 21°	
	$f_{zo} = [mm]$	f _{z0} = [mm]	
20 - 25	32 - 85	52 - 85	25 - 63
1	1,5	2	1
1,00	1,40	1,80	1,40
0,90	1,25	1,60	1,30
0,60	0,90	1,00	1,00
0,45	0,50	0,70	0,50
0,90	1,25	1,60	1,30
0,90	1,25	1,60	1,30
1,00	1,40	1,80	1,40
P2633R10 P26379-R10	P2633R14 P26379-R14	P2633R25 P26379-R25	P23696-1.0
1,0	1,0	1,0	1,0
1,4	1,4	1,4	1,4
1,8	1,8	1,8	1,8

Vorschub-Bestimmung

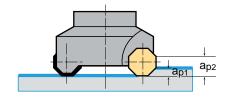

Fräsertypen				F 23	334
Einst	tellwinkel κ				
				$f_{zo} = [$	[mm]
Werk	kzeug-Ø bzw. Ø-Bereich [mm]	25 - 32	32 - 66	40 - 80
max.	Schnitttiefen a _{p max} = L _c	[mm]	4	5	6
	Unlegierter Stahl*		0,11	0,17	0,22
D	Niedriglegierter Stahl*		0,09	0,13	0,15
Р	Hochlegierter Stahl und	Werkzeugstah *	0,09	0,13	0,15
	Nichtrostender Stahl* r	martensitisch	0,07	0,09	0,11
	Grauguss		0,13	0,22	0,28
K	Gusseisen mit Kugelgra	phit	0,11	0,17	0,22
	Temperguss		0,11	0,17	0,22
Wendeplatten-Typen		RO . X0803	RO . X10T3	RO . X1204	
	alitina Falitan Ka	$a_e / D_c = 1/1 - 1/2$	1,0	1,0	1,0
Korr	ektur-Faktor Ka e	1/5	1,1	1,1	1,1
	en Zahnvorschub Ingig vom Verhältnis	1/10	1,2	1,2	1,2
Schr	nittbreite a _e zu	1/20	1,3	1,3	1,3
Fräs	erdurchmesser D _c	1/50			
				l .	I.

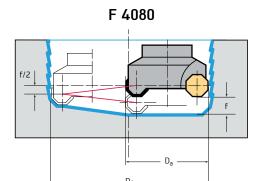
 $f_z = f_{zo} \cdot Ka_e$

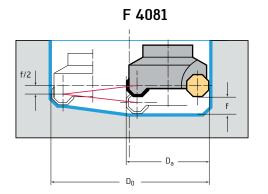
^{*} und Stahlguss

Bohrzirkularfräser: F 2334, F 4042

Xtra·tec®

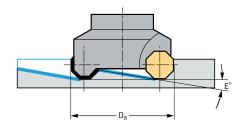

		90°				
				$f_{zo} = [mm]$		
52 - 141	63 - 160	10 - 50	16 - 63	25 - 80	40 - 160	50 - 160
8	10	8	10	11,7	15	16,7
0,28	0,33	0,13	0,16	0,18	0,22	0,27
0,22	0,28	0,09	0,10	0,13	0,16	0,20
0,22	0,28	0,09	0,10	0,13	0,16	0,20
0,13	0,17	0,07	0,09	0,10	0,13	0,16
0,33	0,39	0,13	0,18	0,22	0,27	0,36
0,28	0,33	0,10	0,13	0,18	0,22	0,27
0,28	0,33	0,10	0,13	0,18	0,22	0,27
RO . X1605	RO . X2006	ADT0803	ADT10T3	AD1204	AD.T1606	AD.T1807
1,0	1,0	1,0	1,0	1,0	1,0	1,0
1,1	1,1	1,1	1,1	1,1	1,1	1,1
1,2	1,2	1,2	1,2	1,2	1,2	1,2
1,3	1,3	1,3	1,3	1,3	1,3	1,3


Anwendungsspezifische Daten


PLANFRÄSEN (NUR F 4080)

Maximale Frästiefe a_p [mm]

	OD 0504	OD 0605
a _{p1}	3	4
a _{p2}	8	10



ZIRKULARFRÄSEN EINER BOHRUNG INS VOLLE

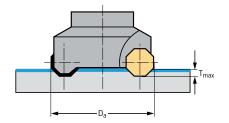
Durchmesserbereich für das Fräsen einer Bohrung in einem Durchgang [mm]

	Wendeschneidplatte					
D_a		OD 050408			OD 060508	
[mm]	D _{0 min} [mm]	D _{0 max} [mm]	f _{max} [mm]	D _{0 min} [mm]	D _{0 max} [mm]	f _{max} [mm]
32	40,4	64	4,5			
40	56,4	80	4,5			
50	76,4	100	4,5	69,5	100	5,8
52	80,4	104	4,5	73,5	104	5,8
58	92,4	116	4,5			
60				89,5	120	5,8
63	102,4	126	4,5	95,5	126	5,8
66	108,4	132	4,5	101,5	132	5,8
71	118,4	142	4,5			
73				115,5	146	5,8
80	136,4	160	4,5	129,5	160	5,8
88	152,4	176	4,5			
90				149,5	180	5,8
100	176,4	200	4,5	169,5	200	5,8
108	192,4	216	4,5			
110				189,5	220	5,8
125	226,4	250	4,5	219,5	250	5,8
133	242,4	266	4,5			
135				239,5	270	5,8
160				289,5	320	5,8
170				309,5	340	5,8

Octagonfräser F 4080 / F 4081

SCHRÄGES EINTAUCHEN

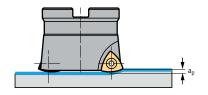
Maximaler Eintauchwinkel E [°]

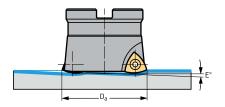

D _a [mm]	OD 0504	OD 0605
32	14,0	
40	8,3	
50	5,5	9,6
52	5,1	8,9
58	4,6	
60		7,7
63	3,8	6,2
66	3,5	5,8
71	3,2	
73		5,4
80	2,7	4,3

inci E []		
D _a [mm]	OD 0504	OD 0605
88	2,4	
90		4,0
100	2,0	3,1
108	2,0	
110		3,1
125	1,5	2,3
133	1,5	
135		2,3
160		1,7
170		1,7

SENKRECHTES EINTAUCHEN

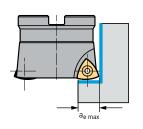
Maximale Tauchtiefe Tmax [mm]


	OD 0504	OD 0605
T _{max}	2,8	4,0

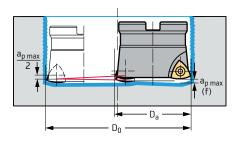

Hinweis:

F 4081 bitte nur mit Wendeplatten mit Eckenradien verwenden, z. B. ODHT0605 $\mathbf{08}$...

Anwendungsspezifische Daten



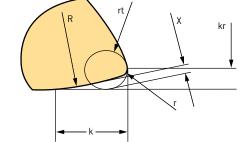
PLANFRÄSEN					
	Maximale Frästiefe a _p [mm]				
	P 2633 . – R 10 P 26379 – R10	P 2633 . – R 14 P 26379 – R14	P 2633 . – R 25 P 26379 – R25		
a _{p max}	1	1,5	2		



SCHRÄGES EINTAUCHEN Maximaler Eintauchwinkel E [°] P 2633 . – R 10 P 26379 – R10 P 2633 . – R 25 P 2633 . – R 14 D_a [mm] P 26379 - R14 P 26379 - R25 4,0 20 2,3 25 2,5 32 35 2,0 40 1,5 42 1,4 2,3 52 1,2 0,9 1,4 66 85 0,6 1,0

TAUCHFRÄSEN Maximale Frästiefe a _e [mm]						
	P 2633 . – R 10 P 26379 – R10	P 2633 . – R 14 P 26379 – R14	P 2633 . – R 25 P 26379 – R25			
a _{p max}	7	10,3	15			

High-Performance Fräser F 2330



ZIRKULARFRÄSEN EINER BOHRUNG INS VOLLE

Durchmesserbereich für das Fräsen einer Bohrung in einem Durchgang [mm]

	Wendeschneidplatte								
D _a [mm]	P 2633 . – R 10 P 26379 – R10*			. – R 14 9 – R14*	P 2633 . – R 25 P 26379 – R25*				
[111111]	D _{0 min} [mm]	D _{0 max} [mm]	D _{0 min} [mm]	D _{0 max} [mm]	D _{0 min} [mm]	D _{0 max} [mm]			
20	24,2	40							
25	34,2	50							
32			41,8	64					
35			47,8	70					
40			57,8	80					
42			61,8	84					
52			81,8	104	70,4	102,6			
66			109,8	132	98,4	130,6			
85			147,8	170	136,4	168,6			

^{*}Spezielle Geometrie zum Bohrzirkularfräsen (siehe Geometriebeschreibung Seite 68)

PROGRAMMIERINFORMATION

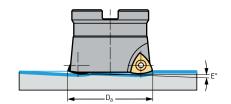
Wendeplatte	R	r	rt	k	kr	Х
P 2633 . – R 10	10,0	0,8	2,0	4,0	1,8	0,5
P 2633 . – R 14	14,0	1,2	2,5	5,5	2,6	0,8
P 2633 . – R 25	25,0	2,0	3,0	8,0	3,4	0,9


Beim Programmieren des theoretischen Werkzeugradius "rt" ergibt sich eine maximale Abweichung zur Endkontur wie aufgezeigt. Der minimale Unterschied (nur in den Ecken) wird von den Nachfolge-Werkzeugen zur Restbearbeitung korrigiert.

Anwendungsspezifische Daten

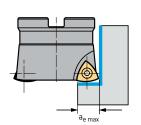
PLANFRÄSEN

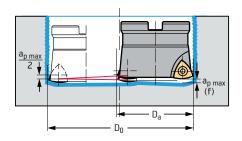
Maximale Frästiefe a_p [mm]


	P 23696 – 1.0
a _{p1}	1,0

SCHRÄGES EINTAUCHEN

Maximaler Eintauchwinkel E [°]

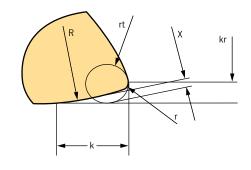

	• •
$D_a[mm]$	P 23696 – 1.0
25	10,5
32	8,0
35	7,0
40	5,5
42	5,0
50	3,8
52	3,5
63	2,5


TAUCHFRÄSEN

Maximale Frästiefe a_e [mm]

$D_a[mm]$	P 23696 – 1.0
25	8,5
32	10
35	10
40	10
42	10
50	10
52	10
63	10
·	·

High-Performance Fräser F 4030



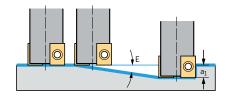
ZIRKULARFRÄSEN EINER BOHRUNG INS VOLLE

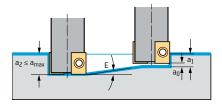
Durchmesserbereich für das Fräsen einer Bohrung in einem Durchgang [mm]

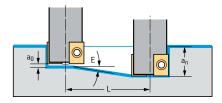
D _a	P 23696 – 1.0				
[mm]	D _{0 min} [mm]	D _{0 max} [mm]			
25	33	50			
32	44	64			
35	50	70			
40	59	80			
42	63	84			
50	78	100			
52	82	104			
63	104	126			

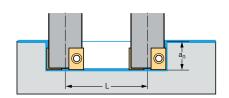
PROGRAMMIERINFORMATION

Wendeplatte	R	r	rt	k	kr	X
P 23696-1.0	14,0	1,2	2,0	5,8	2,1	0,6


Beim Programmieren des theoretischen Werkzeugradius "rt" ergibt sich eine maximale Abweichung zur Endkontur wie aufgezeigt. Der minimale Unterschied (nur in den Ecken) wird von den Nachfolge-Werkzeugen zur Restbearbeitung korrigiert.


Anwendungsspezifische Daten


SCHRÄGES EINTAUCHEN UND ZIRKULAR-EINTAUCHEN INS VOLLE									
Eintauchen mit Eckfräser F 4042 / F 4042R									
			080304				LOT308		
		a _{max} =	8 mm			a _{max} =	10 mm		
Fräser-Ø D _c [mm]	Tauch- winkel E _{max} [°]	D _{0 min} [mm]	D _{0 max} [mm]	a ₀ [mm]	Tauch- winkel E _{max} [°]	D _{0 min} [mm]	D _{0 max} [mm]	a₀ [mm]	
10	12,1	15	20	0,75					
12	9,9	17	24	0,8					
16	13,7	21	32	2,0	6,6	20	32	0,9	
20	8,9	29	40	1,9	2,9	28	40	0,6	
25	5,6	39	50	1,7	2	38	50	0,6	
32	3,8	53	64	1,6	1,4	52	64	0,6	
40	2,8	69	80	1,6	1,1	68	80	0,6	
50	2,2	89	100	1,6	0,8	88	100	0,6	
63					0,6	114	126	0,6	


SCHRÄGES EINTAUCHEN UND ZIRKULAR-EINTAUCHEN INS VOLLE Eintauchen mit Eckfräser F 4042									
			.20408 11 mm		AD 160608 a _{max} = 15 mm				
Fräser-Ø D _c [mm]	Tauch- winkel E _{max} [°]	D _{o min} [mm]	D _{0 max} [mm]	a _o [mm]	Tauch- winkel E _{max} [°]	D _{0 min} [mm]	D _{0 max} [mm]	a _o [mm]	
25	8,5	36	50	2,3					
32	5,6	50	64	2,2					
40	3,9	66	80	2,1	5,9	62	80	2,9	
50	2,7	86	100	1,9	3,9	82	100	2,6	
63	2,0	112	126	1,9	2,6	108	126	2,3	
80	1,5	146	160	1,9	1,9	142	160	2,3	
100					1,5	182	200	2,3	
120					1,2	232	250	2,3	
160	_				0,9	302	320	2,3	

Eckfräser F 4042, F 4042R

SCHRÄGES EINTAUCHEN UND ZIRKULAR-EINTAUCHEN INS VOLLE

Eintauchen mit Eckfräser F 4042

	AD 180712 a $_{max} = 16 \text{ mm}$						
Fräser-Ø D _c [mm]	Tauch- winkel E _{max} [°]	D _{0 min} [mm]	D _{0 max} [mm]	a ₀ [mm]			
50	2,9	74	100	1,7			
63	2,1	100	126	1,7			
80	1,5	134	160	1,7			
100	1,2	174	200	1,7			
120	0,9	224	250	1,7			
160	0,7	294	320	1,7			

Erklärung der Kurzzeichen

a₀ [mm] Betrag, um den das Werkzeug am Eintauchende vor dem

> nächsten Eintauchen abgehoben werden muss

a_n [mm] Nuttiefe

 \mathbf{a}_{max} [mm] max. Frästiefe des Werkzeugs

E [°] Eintauchwinkel

L [mm] Nutlänge ohne Radius

n Anzahl der schrägen

Eintauchvorgänge

Nuttiefe nach 2 Eintauchvorgängen:

$$a_2 = 2 \cdot L \cdot \tan E - a_0$$

Nuttiefe nach schrägem Eintauchen:

$$a_n = n \cdot L \cdot tan E - (n-1) \cdot a_0$$

Eintauchwinkel:

$$\tan E = \frac{[a_n + (n-1) \cdot a_0]}{(n \cdot L)}$$

Zahl der schrägen Eintauchvorgänge:

$$n = \frac{(a_n - a_0)}{(L \cdot tan E_{max} - a_0)}$$

Anwendungsspezifische Daten

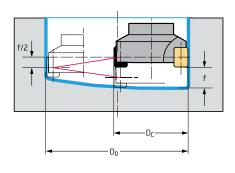
ZIRKULARFRÄSEN

Max. Axialvorschub pro Werkzeugumlauf ("Gewindesteigung") f [mm]

bearbeiteter Bohrungs-Ø	AD 080304 D _c [mm]								
D_0 [mm]	10	12	16	20	25	32	40	50	
15	3,4								
20	6,7	4,4							
30	8,0	8,0	8,0	4,9					
40	8,0	8,0	8,0	8,0	4,7				
50	8,0	8,0	8,0	8,0	7,8				
60	8,0	8,0	8,0	8,0	8,0	5,8			
80	8,0	8,0	8,0	8,0	8,0	8,0	6,2		
100	8,0	8,0	8,0	8,0	8,0	8,0	8,0	6,0	
120	8,0	8,0	8,0	8,0	8,0	8,0	8,0	8,0	
150	8,0	8,0	8,0	8,0	8,0	8,0	8,0	8,0	
180	8,0	8,0	8,0	8,0	8,0	8,0	8,0	8,0	
200	8,0	8,0	8,0	8,0	8,0	8,0	8,0	8,0	
250	8,0	8,0	8,0	8,0	8,0	8,0	8,0	8,0	

ZIRKULARFRÄSEN

Max. Axialvorschub pro Werkzeugumlauf ("Gewindesteigung") f [mm]

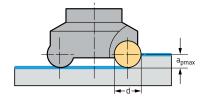

bearbeiteter Bohrungs-Ø	AD 10T308 D _c [mm]								
D_0 [mm]	16	20	25	32	40	50	63		
15									
20	1,5								
30	5,1	1,6							
40	8,7	3,2	1,6						
50	10,0	4,8	2,7						
60	10,0	6,4	3,8	2,1					
80	10,0	9,5	6,0	3,7	2,4				
100	10,0	10,0	8,2	5,2	3,6	2,2			
120	10,0	10,0	10,0	6,8	4,8	3,1	1,9		
150	10,0	10,0	10,0	9,1	6,6	4,4	2,9		
180	10,0	10,0	10,0	10,0	8,4	5,7	3,8		
200	10,0	10,0	10,0	10,0	9,7	6,6	4,5		
250	10,0	10,0	10,0	10,0	10,0	8,8	6,2		

Eckfräser F 4042, F 4042R (Fortsetzung)

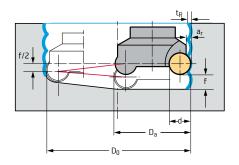
ZIRKULARFRÄSEN

Max. Axialvorschub pro Werkzeugumlauf ("Gewindesteigung") f [mm]

		, ,												
bearbeiteter Bohrungs-Ø		AD 120408 D_{c} [mm]				AD 160608 D _c [mm]								
D_0 [mm]	25	32	40	50	63	80	40	50	63	80	100	125	160	
40	7,0													
50	11,0	5,5												
60	11,0	8,6												
80	11,0	11,0	8,7				13,1							
100	11,0	11,0	11,0	7,4			15,0	10,8						
120	11,0	11,0	11,0	10,3	6,4		15,0	15,0	8,1					
150	11,0	11,0	11,0	11,0	9,7	3,4	15,0	15,0	12,4	7,5				
180	11,0	11,0	11,0	11,0	11,0	5,9	15,0	15,0	15,0	10,7				
200	11,0	11,0	11,0	11,0	11,0	8,5	15,0	15,0	15,0	12,8	8,2			
250	11,0	11,0	11,0	11,0	11,0	10,2	15,0	15,0	15,0	15,0	12,3	8,0		
300	11,0	11,0	11,0	11,0	11,0	11,0	15,0	15,0	15,0	15,0	15,0	11,2		
350	11,0	11,0	11,0	11,0	11,0	11,0	15,0	15,0	15,0	15,0	15,0	14,4	9,3	
400							15,0	15,0	15,0	15,0	15,0	15,0	11,7	
450							15,0	15,0	15,0	15,0	15,0	15,0	14,2	
500							15,0	15,0	15,0	15,0	15,0	15,0	15,0	



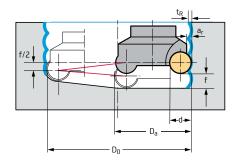
ZIRKULARFRÄSEN


Max. Axialvorschub pro Werkzeugumlauf ("Gewindesteigung") f [mm]

bearbeiteter Bohrungs-Ø	AD 180712 D _c [mm]									
D_0 [mm]	50	63	80	100	125	160				
80	4,8									
100	7,9	4,2								
120	11,1	6,5								
150	15,9	10,0	5,9							
180	16,0	13,4	8,4	5,1						
200	16,0	15,7	10,1	6,4						
250	16,0	16,0	14,3	9,6	6,1					
300	16,0	16,0	16,0	12,8	8,6	5,2				
350	16,0	16,0	16,0	16,0	11,1	7,1				
400	16,0	16,0	16,0	16,0	13,5	8,9				
450	16,0	16,0	16,0	16,0	16,0	10,8				
500	16,0	16,0	16,0	16,0	16,0	12,6				

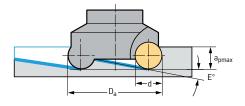
Anwendungsspezifische Daten

	PLANFRÄSEN										
Maximale Frästiefe a _p [mm]											
	Wendeplatten-Durchmesser d [mm]										
	d = 8	d = 10	d = 12 d = 16 d								
a _{pmax} [mm]	4,0	5,0	6,0	8,0	10,0						

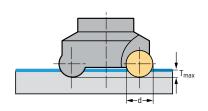


ZIRKULARFRÄSEN EINER BOHRUNG INS VOLLE

Durchmesserbereich für das Fräsen einer Bohrung in einem Durchgang [mm]

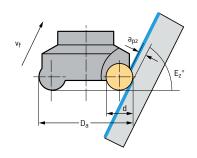

	Wendeplatten-Durchmesser d [mm]										
D_{a}	d =	= 8	d =	10	d =	12	d =	16	d = 20		
[mm]	D _{0 min} [mm]	D _{0 max} [mm]	D _{0 min} [mm]	D _{0 max} [mm]	D _{0 min} [mm]	D _{0 max} [mm]	D _{0 min} [mm]	D _{0 max} [mm]	D _{0 min} [mm]	D _{0 max} [mm]	
25	34,6	50									
32	48,4	64	45	64							
40			61	80	57,4	80					
50			81,4	100	77,2	100					
52			85	104	81,2	104	75,4	104			
63			102,4	126	103,2	126	97,6	126			
66			113	132	109,4	132	103,4	132	97	132	
80					137,8	160	131,4	160	124,8	160	
96							163,4	192			
100							171,4	200	164,8	200	
116							203,4	232			
125							221,4	250	214,8	250	
141							253,4	282			
160									284,8	320	

Rundplattenfräser F 2334

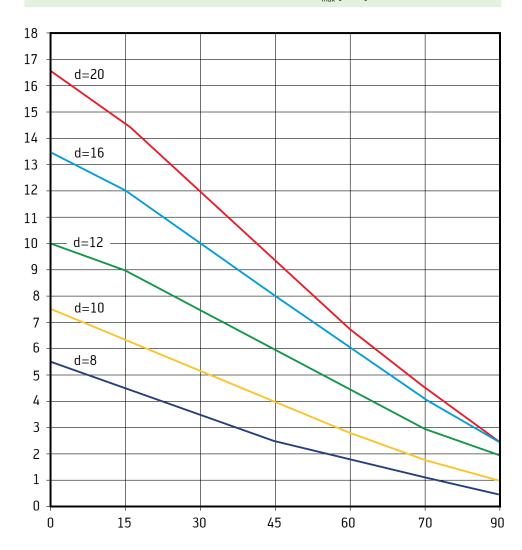


ZIRKULARFRÄSEN EINER BOHRUNG INS VOLLE Rillentiefe an Bohrungswandung t_R [mm] axialer Vorschub Wendeplatten-Durchmesser d [mm] pro Umlauf d = 10d = 12 f[mm] d = 8d = 16d = 201 0,031 0,025 0,02 0,015 0,01 2 0,127 0,010 0,08 0,06 0,05 3 0,292 0,230 0,19 0,14 0,11 0,536 0,417 0,25 4 0,34 0,20 5 0,670 0,878 0,54 0,40 0,32 6 (1,000)0,80 0,58 0,46 (1,429)0,81 0,63 (1,12)8 (1,07)(1,53)0,84 1,25 1,5 3,0 4,5 2,0 $a_{r\,\text{max}}$

Anwendungsspezifische Daten



SCHRÄGES EINTAUCHEN Maximaler Eintauchwinkel E [°]											
D_a		Wendepla	tten-Durchmess	er d [mm]							
[mm]	d = 8	d = 10	d = 12	d = 12 d = 16							
25	10,5										
32	6,8	8,6									
40		5,8	7,9								
50		4,0	5,4								
52		3,9	5,3	6,1							
63		3,0	3,4	4,4							
66		2,8	3,4	4,1	5,3						
80			2,6	3,1	3,9						
96				2,4							
100				2,3	2,8						
116				1,9							
125				1,7	2,1						
141				1,5							
160					1,5						
a _{p max} [mm]	6,9	8,8	10,5		1,9						


SENKRECHTES EINTAUCHEN Maximale Tauchtiefe T _{max} [mm]										
	Wendeplatten-Durchmesser d [mm]									
	d = 8	d = 10	d = 12	d = 16	d = 20					
T _{max} [mm]	2,4	2,6	3,1	1,2	1,6					

Rundplattenfräser F 2334 (Fortsetzung)

SCHRÄGES HOCHZIEHEN

F 2334: Maximale Tauchtiefe T_{max} [mm]

Wendeplatten-Geometriebeschreibung

Geometrie- beispiel	Anmerkungen Anwendungsgebiet	Schnitt Hauptschneide	Werkstückstoff- Gruppe P M K N S I			н	passende Werkzeug- familien	
0	P 26335 – Die Leichtschneidende → für gute Bearbeitungs- bedingungen → niedrige Schnittkräfte → mittlere Vorschübe	10° \	••	••	••	••		F 2010 F 2330
	P 26337 – Die Stabile → für ungünstige Bearbeitungsbedingungen → höchste Schneidkanten- stabilität → hohe Vorschübe	0°	••	•	••	•		
	P 26339 – Die Universelle → für mittlere Bearbeitungs- bedingungen → universeller Einsatz für die meisten Werkstoffe	Schneidecke O° Hauptschneide	••	••	••	••		
	P 26379 – Die Spezielle → für die Bohrzirkular- bearbeitung → universeller Einsatz für die meisten Werkstoffe → Ausführung mit Schlepp- schneide	Schneidecke O° Hauptschneide	••	••	••	••		

P = Stahl

M = Nichtrostender Stahl

K = GusseisenN = NE-Metalle

S = Schwerzerspanbare Werkstoffe

H = Harte Werkstoffe

• Hauptanwendung

weitere Anwendung

Plan- und Bohrzirkularfräser

Geometrie- beispiel	Anmerkungen Anwendungsgebiet	Schnitt		Wer	passende Werkzeug- familien				
	P 23696-1 – Die Universelle → für mittlere bis ungünstige Bearbeitungsbedingungen → universeller Einsatz für die meisten Werkstoffe	Hauptschneide 20°	P ••	• •	• •	N	••	H	F 4030
OD	A27 – Die Stabile → für ungünstige Bearbeitungsbedingungen → höchste Schneidkanten- stabilität → hohe Vorschübe	0°	••		••				F 2010 F 4080 F 4081
	A57 – Die Spezielle → für mittlere Bearbeitungs- bedingungen → vorwiegend für die Guss- bearbeitung	0°	•		••				
	D57 – Die Universelle → für mittlere Bearbeitungs- bedingungen → universeller Einsatz für die meisten Werkstoffe	10°	••	••	••		••		
	F57 – Die Leichtschneidende → für gute Bearbeitungsbedingungen → niedrige Schnittkräfte → mittlere Vorschübe	16°	••	••	••		••		
	G88 – Die Scharfe → für die Aluminium- bearbeitung → niedrige Schnittkräfte → scharfe Schneidkanten	20°				••			

- Hauptanwendung
- weitere Anwendung

Wendeplatten-Geometriebeschreibung

Geometrie- beispiel	A managha an an	Calmitt.		Wer	passende Werkzeug- familien				
Geol	Anmerkungen Anwendungsgebiet	Schnitt Hauptschneide	P	М	K	N	S	Н	pass Wer fam
SN.X.	D27 – Die Spezielle → für die Bearbeitung von Gussmaterialien → bei Sandeinschlüssen oder Gusskrusten → höchste Prozesssicherheit	10°\	•		••				F 2010 F 4033 F 4047 F 4048
	F27 – Die Stabile → für ungünstige Bearbeitungsbedingungen → höchste Schneidkanten- stabilität → hohe Vorschübe	16°	••	•	••		•		
	F57 – Die Universelle → für mittlere Bearbeitungs- bedingungen → universeller Einsatz für die meisten Werkstoffe	16°	••	••	••		••		
	F67 – Die Leichtschneidende → für gute Bearbeitungs- bedingungen → niedrige Schnittkräfte → mittlere Vorschübe	16°	••	••	••		••		
	 K88 – Die Scharfe → für die Aluminium- bearbeitung → niedrige Schnittkräfte → scharfe Schneidkanten 	22°				••			

P = Stahl

M = Nichtrostender Stahl

K = Gusseisen
N = NE-Metalle

S = Schwerzerspanbare Werkstoffe

H = Harte Werkstoffe

• Hauptanwendung

weitere Anwendung

Plan- und Eckfräser

Geometrie- beispiel	A	Colorita	Werkstückstoff- Gruppe					passende Werkzeug- familien	
Geo	Anmerkungen Anwendungsgebiet	Schnitt Hauptschneide	Р	М	K	N	S	Н	pass Wer fam
XNHF	D27 – Die Stabile → für ungünstige Bearbeitungsbedingungen → höchste Schnittkanten- stabilität → hohe Vorschübe	10°	•		••				F 4045
	D57 – Die Universelle → für mittlere Bearbeitungs- bedingungen → universeller Einsatz	10°	•		••				
	D67 – Die Leichtschneidende → für gute Bearbeitungs- bedingungen → niedrige Schnittkräfte → mittlere Vorschübe	10°	•		••				
INCY	L55 – Die Universelle → für mittlere Bearbeitungsbedingungen → universeller Einsatz für die meisten Werkstoffe	20°	••	••	••		••		F 2010 F 4041
LNGX	L88 – Die Scharfe → für die Aluminium- bearbeitung → niedrige Schnittkräfte → scharfe Schneidkanten	28°				••			

- • Hauptanwendung
- weitere Anwendung

Wendeplatten-Geometriebeschreibung Eckfräser

Geometrie- beispiel	Anmorkungen	Schnitt	Werkstückstoff- Gruppe						passende Werkzeug- familien
Geo beis	Anmerkungen Anwendungsgebiet	Hauptschneide	Р	М	K	N	S	Н	pass Wer fam
1	D51 – Die Beruhigte → Antivibrations-Geometrie → für Werkzeuge mit langer Auskragung	10°	••	•	••		•		F2010 F 4042 F 4042R F 4038 F 4138
AD . T	D56 – Die Stabile → für ungünstige Bearbeitungsbedingungen → höchste Schneidkanten- stabilität → hohe Vorschübe	10°	••	•	••		•		F 4238 F 4338
	D67 – Die Kräftige → hohe Schneidkanten- stabilität → für die Bearbeitung von hochlegierten, hochfesten Stählen und Ni-Basis Legierungen → hohe Genauigkeit	10°	••	••	•		••		
	F56 – Die Universelle → für mittlere Bearbeitungsbedingungen → universeller Einsatz für die meisten Werkstoffe	16°	••	••	••		••		
	G56 − Die Leichtschneidende → für gute Bearbeitungs- bedingungen → niedrige Schnittkräfte → mittlere Vorschübe	20°	••	••	••		••		
	 G77 – Die Spezielle → für die Bearbeitung von Titanwerkstoffen → niedrige Schnittkräfte → hohe Genauigkeit 	20°	•	••			••		
	G88 – Die Scharfe → für die Aluminium- bearbeitung → niedrige Schnittkräfte → scharfe Schneidkanten	20°				••			

Kopierfräser

Geometrie- beispiel			Werkstückstoff- Gruppe					passende Werkzeug- familien	
Geomet beispiel	Anmerkungen Anwendungsgebiet	Schnitt Hauptschneide	Р	М	K	N	S	Н	passend Werkzeu familien
RO . X	A27 – Die Stabile → für ungünstige Bearbeitungsbedingungen → höchste Schneidkanten- stabilität → hohe Vorschübe	0°	••		••				F 2010 F 2334
	D57 – Die Universelle → für mittlere Bearbeitungs- bedingungen → universeller Einsatz für die meisten Werkstoffe	10°\	••	••	••		••		
	D67 – Die Kräftige → hohe Schneidkanten- stabilität → für die Bearbeitung von hochlegierten, hochfesten Stählen und Ni-Basis Legierungen wie z. B. Inconel → hohe Genauigkeit	10°	••	••	•		••		
	G77 – Die Spezielle → für die Bearbeitung von Titanwerkstoffen → niedrige Schnittkräfte → hohe Genauigkeit	20°	•	••			••		

P = Stahl

M = Nichtrostender Stahl

K = Gusseisen

N = NE-Metalle

S = Schwerzerspanbare Werkstoffe

H = Harte Werkstoffe

• Hauptanwendung

weitere Anwendung

Geometriebeschreibung Scheibenfräser

Geometrie- beispiel			Werkstückstoff- Gruppe					passende Werkzeug- familien	
Geomet beispiel	Anmerkungen Anwendungsgebiet	Schnitt Hauptschneide	P	М	K	N	S	Н	pass Werk famil
LN.X	D57T – Die Stabile → für ungünstige Bearbeitungsbedingungen → höchste Schneidkanten- stabilität → hohe Vorschübe	12°)	••		••				F 4053
	F57T – Die Universelle → für mittlere Bearbeitungs- bedingungen → universeller Einsatz für die meisten Werkstoffe	18°	••	••	••		••		
LN.U	B57T – Die Stabile → für ungünstige Bearbeitungsbedingungen → höchste Schneidkanten- stabilität → hohe Vorschübe	6°	••		••				F 4153 F 4253
	F57T – Die Universelle → für mittlere Bearbeitungs- bedingungen → universeller Einsatz für die meisten Werkstoffe	16°\	••	••	••		••		

P = Stahl

M = Nichtrostender Stahl

K = GusseisenN = NE-Metalle

S = Schwerzerspanbare Werkstoffe

H = Harte Werkstoffe

• Hauptanwendung

weitere Anwendung

Werkstoffgruppen

Stahl		R _m (N/mm²)	k _c 1.1 (N/mm²)	m _c
	Weiche Stähle mit niedrigem Kohlenstoffanteil Ferritische Stähle mit niedriger Festigkeit	<450	1350	0,21
	Automatenstähle mit niedrigem Kohlenstoffgehalt	400 < 700	1500	0,22
	Normale Baustähle und Stähle mit niedrigem bis mittlerem Kohlenstoffanteil (< 0.5 $\%$ C)	450 < 550	1500	0,25
P	Normale, niedriglegierte Stähle und Stahlguss, Vergütungsstahl, Kohlenstoffstahl (> 0.5 % C), ferritische und martensitische, rostfreie Stähle	550 < 700	1700	0,24
	Normale Werkzeugstähle, härtere Vergütungsstähle, martensitische, rostfreie Stähle	700 < 900	1900	0,24
	Schwierig zerspanbare Werkzeugstähle, harte, hochlegierte Stähle und Stahlguss, martensitische, rostfreie Stähle		2000	0,24
	Hochfeste Stähle, schwierig zerspanbare, gehärtete Stähle der Gruppen 3 – 6, martensitische, rostfreie Stähle	> 1200	2900	0,22
Gusseis	sen	R _m (N/mm²)	k _c 1.1 (N/mm²)	m _c
	Guss von mittlerer Härte, Grauguss		1150	0,22
v	Niedriglegierter Guss, Temperguss, Kugelgraphitguss		1225	0,25
K	Legierter Guss von mittlerer Härte, Temperguss, GGG, mittlere Zerspanbarkeit		1350	0,28
	Hochlegierter Guss, schwer zerspanbar, Temperguss, GGG, schwer zerspanbar		1470	0,30

Berechnungsformeln

Drehzahl

$$n = \frac{v_c \times 1000}{D_c \times \pi} \quad [min^{-1}]$$

Schnittgeschwindigkeit

$$v_c = \frac{D_c \times \pi \times n}{1000}$$
 [m/min]

Vorschubgeschwindigkeit

$$v_f = f_z \times z \times n$$
 [mm/min]

Zahnvorschub

$$f_z = \frac{v_f}{z \times n}$$
 [mm/z]

Zeitspanvolumen

$$Q = \frac{a_e \times a_p \times v_f}{1000} \text{ [cm }^3\text{/min]}$$

Leistungsbedarf

$$P_{mot} = \frac{a_p \times a_e \times v_f \times k_C}{6 \times 10^7 \times \eta} \text{ [kW]}$$

n D _C	Drehzahl Schneid-	min ⁻¹	$h_{\scriptscriptstyle m}$	Mittlere Spanungsdicke	mm
υ _C	durchmesser	mm	k_c	Spezifische Schnittkraft	N/mm²
a_p	Schnitttiefe	mm			14/111111
a_e	Schnittbreite	mm	η	Wirkungsgrad Maschine (0,7–0,95)	
Z	Zähnezahl		к	Einstellwinkel	0
V _c	Schnitt- geschwindigkeit	m/min	ϕ_{s}	Eingriffswinkel	0
V _f	Vorschub- geschwindigkeit	mm/min	k _c 1.1*	Spezifische Schnittkraft für 1 mm²	
f_z	Zahnvorschub	mm		Spanquerschnitt	N/mm²
Q	Zeitspanvolumen	cm³/min	m_c^*	Anstieg der k _c -Kurve	
P_{mot}	Antriebsleistung	kW		Spanwinkel	0
			*m _c unc	t k _c 1.1 siehe Tabelle auf So	eite 75

Mittlere Spanungsdicke

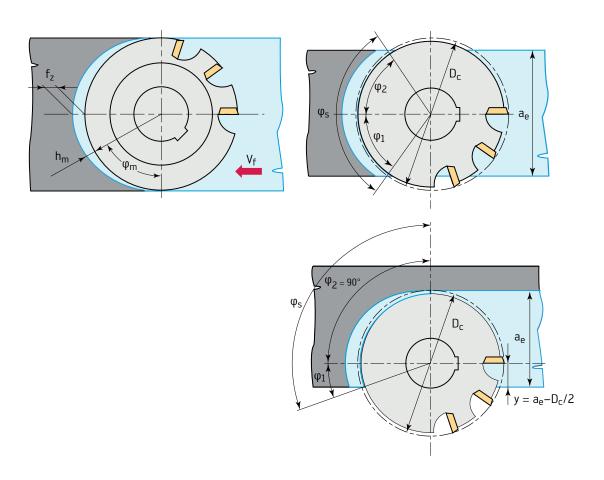
$$h_{m} = \frac{\{114,7 \times f_{z} \times sin\kappa \times (a_{e} \ / \ D_{c})\}}{\phi_{s}}$$

$$\text{oder} \qquad h_m \cong f_z \times \sqrt{\frac{a_e}{D_c}} \quad [mm]$$

als Näherungsformel für $a_e/D_c < 30~\%$

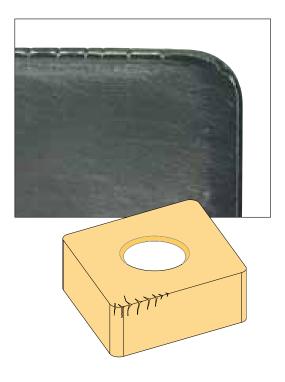
Eingriffswinkel

bei zentraler Stellung des Fräsers


$$\phi_s = 2 \times arcsin(\frac{a_e}{D_c})$$

bei außermittiger Stellung des Fräsers

$$\phi_{\rm S} = 90^{\circ} + \arcsin \frac{a_{\rm e} - (D_{\rm C}/2)}{(D_{\rm C}/2)}$$


Spezifische Schnittkraft

$$k_{\text{C}} = \frac{1 - 0.01 \times \gamma_{0}}{{h_{\text{m}}}^{m_{\text{C}}}} \times k_{\text{C1.1}}$$

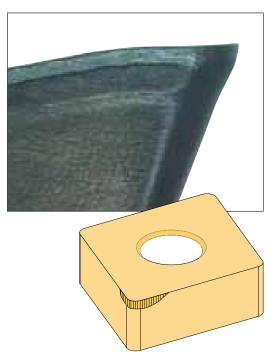
Problemlösungen

KAMMRISSBILDUNG

Merkmal

Kleine Risse senkrecht zur Schneidkante, die Kantenausbröckelung und Wendeplattenbruch zur Folge haben können.

Entstehung


Kammrissbildung durch Temperaturwechselbeanspruchung

- aufgrund von unterbrochenem
 Schnitt (kurze Kontaktzeit zwischen
 Schneide und Werkstück, lange
 Abkühlphase)
- Verwendung von Kühlmittel (Thermoschock)

Abhilfe/Maßnahme

- evtl. ohne Kühlmittel arbeiten
- zähere Sorte einsetzen
- Schnittgeschwindigkeit reduzieren

FREIFLÄCHENVERSCHLEISS

Merkmal

Am häufigsten vorkommende Verschleißart, die an der Freifläche auftritt.

Entstehung

- entsteht durch Abrasion zwischen Freifläche und Werkstück
- beim Schruppen führt dies häufig zu Vibrationen und erhöhtem Leistungsbedarf, beim Schlichten zu schlechten Oberflächen

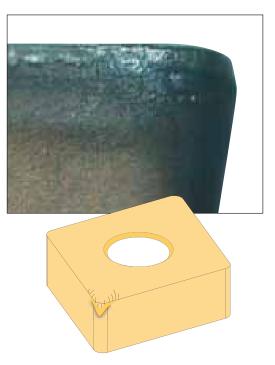
Abhilfe/Maßnahme

- verschleißfeste Sorte einsetzen
- Schnittgeschwindigkeit reduzieren
- Vorschub erhöhen

AUSBRÖCKELUNGEN

Merkmal

Ausbröckelungen von kleinen Schneidstoffteilen an der Schneidkante.


Entstehung

- mechanische Überlastung führt zum Herausbrechen von kleinen Schneidstoffteilen an der Schneidkante
- kann als Folge von Kammrissen entstehen

Abhilfe/Maßnahme

- stabilere Geometrie wählen (größere Abzugsphase)
- auf stabilen Zerspanungsprozess achten
- zähere Sorte einsetzen

PLASTISCHE DEFORMATION

Merkmal

Undefiniert deformierte Schneidkante.

Entstehung

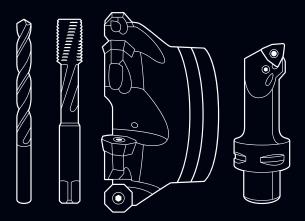
- entsteht bei hohen Zerspanungstemperaturen in Verbindung mit hoher mechanischer Belastung durch "Erweichung" und "Fließen" des Schneidstoffes
- führt zu plötzlichem und starkem Ansteigen von Zerspanungstemperatur und Schnittkraft, Maßschwankungen und schlechter Oberfläche am Bauteil, teilweise Bruch der Schneidkante

Abhilfe/Maßnahme

- verschleißfeste Sorte einsetzen
- Schnittgeschwindigkeit reduzieren
- Vorschub reduzieren

Problemlösungen

	Abhilfe/Maßnahme						
Problem	Schnittgeschwindigkeit (v_c)	Vorschub je Zahn (f ₂)	Hartmetall- Zähigkeit	Hartmetall- Verschleißfestigkeit	Einstellwinkel (κ)	Spanwinkel	Schneidkantenstabilität
Aufbauschneidenbildung	+	+			~	+	_
Kammrissbildung	_		+				
Kantenausbrüche am Werkstück		-					_
Maschinenüberlastung	_					+	
Rattern, Vibrationen	~	~				~	~
Schlechte Werkstückoberfläche	+	-					_
Schneidkantenausbröckelung		-	+			~	+
Schneidkantendeformation	_	-		+~			
Spanbildung, Spänestau						~	~
Übermäßiger Kolkverschleiß	_	_		+			
Übermäßiger Freiflächenverschleiß	_			+			
Wendeschneidplatten-Bruch		I	+			~	


- 🛨 erhöhen, vergrößern
- vermindern, verkleinern
- \sim kontrollieren, optimieren

Notizen

Walter AG

Derendinger Straße 53, 72072 Tübingen Postfach 2049, 72010 Tübingen Deutschland

www.walter-tools.com

Walter Deutschland GmbH

Frankfurt, Deutschland +49 (0) 69 78902-100, service.de@walter-tools.com

Walter (Schweiz) AG

Solothurn, Schweiz +41 (0) 32 617 40 72, service.ch@walter-tools.com

Walter Austria GmbH

Wien, Österreich +43 (1) 5127300-0, service.at@walter-tools.com